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Abstract

Background: Combination therapy is one of the most effective tools for limiting the emergence of drug resistance
in pathogens. Despite the widespread adoption of combination therapy across diseases, drug resistance rates
continue to rise, leading to failing treatment regimens. The mechanisms underlying treatment failure are well
studied, but the processes governing successful combination therapy are poorly understood. We address this
question by studying the population dynamics of Mycobacterium tuberculosis within tuberculosis patients
undergoing treatment with different combinations of antibiotics.

Results: By combining very deep whole genome sequencing (~1000-fold genome-wide coverage) with sequential
sputum sampling, we were able to detect transient genetic diversity driven by the apparently continuous turnover
of minor alleles, which could serve as the source of drug-resistant bacteria. However, we report that treatment
efficacy has a clear impact on the population dynamics: sufficient drug pressure bears a clear signature of purifying
selection leading to apparent genetic stability. In contrast, M. tuberculosis populations subject to less drug pressure
show markedly different dynamics, including cases of acquisition of additional drug resistance.

Conclusions: Our findings show that for a pathogen like M. tuberculosis, which is well adapted to the human host,
purifying selection constrains the evolutionary trajectory to resistance in effectively treated individuals. Nonetheless,
we also report a continuous turnover of minor variants, which could give rise to the emergence of drug resistance
in cases of drug pressure weakening. Monitoring bacterial population dynamics could therefore provide an
informative metric for assessing the efficacy of novel drug combinations.
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Background
The public health and economic impact of drug resist-
ance is steadily increasing [1, 2]. Empirical studies and
mathematical modeling strongly support the simultan-
eous use of multiple drugs with disparate mechanisms
of action—combination therapy—as a powerful approach
to enhance treatment efficiency and reduce the likelihood
of resistance [3–5]. The reason why combination therapy
is so effective partially stems from the constraint placed
on cells to acquire sufficient mutations to overcome the
pressure from multiple drugs [6, 7]. Combination therapy
has therefore become the cornerstone of treatments for
some of the major causes of human mortality and morbid-
ity: human immunodeficiency virus (HIV) infection,
malaria, tuberculosis (TB), and cancer. Nonetheless, drug
resistance remains a serious threat to the success of treat-
ment despite the broad implementation of combination
therapy [8–10]. Less effective drug combinations [11],
de facto monotherapy due to differences in drug pene-
tration and stability [12–14], poor drug quality [15],
prior existence of resistance [16, 17], and poor patient
compliance [18] can all result in the alleviation of drug
pressure. In cases where resistance is mediated by
chromosomal mutations, which includes HIV, TB, mal-
aria, and cancer, decreased drug pressure can facilitate
emergence of resistance mutations leading to multidrug
resistance [19–23]. The evolutionary processes driving
drug resistance occur across several scales, spanning
from the de novo emergence of resistance mutations to
their transmission and ultimate fixation within a popu-
lation [24]. The ability to integrate information across
scales would improve our understanding of the adaptive
processes involved [25] and result in enhanced ap-
proaches to combination therapy.
Directly observed treatment, short course (DOTS) is the

current standard treatment for drug-susceptible TB.
DOTS relies on a combination of four antibiotics—isonia-
zid, rifampicin, ethambutol, and pyrazinamide—adminis-
tered with supervision for a total of 6 months. When
implemented correctly, DOTS is very effective; it reduces
the rate of disease relapse to less than 5% [26] and the rate
of acquired resistance to similarly low levels [27, 28]. The
two most effective drugs in DOTS are isoniazid and rifam-
picin. Resistance to both is defined as multidrug-resistant
TB (MDR-TB) and is associated with a poorer prognosis
and longer treatment times [29]. Despite the efficacy of
DOTS, MDR-TB has emerged independently on multiple
occasions across the globe [30–32]. Repeated failure to
optimally administer the combination treatment culmi-
nates in the emergence of strains resistant to all constitu-
ents of the regimen [23, 33, 34]. Whole genome
sequencing (WGS) has been indispensable for identifying
the mutations that underpin drug resistance [35–37].
Placing WGS data in the context of evolutionary theory

allows the detection of treatment-driven positive selection
of resistance determinants both as convergent evolution
in epidemiologically unrelated populations [35, 38–40] as
well as enrichment and ultimate fixation of resistance-
conferring alleles within single patients during the course
of treatment [41–45].
However, the focus on treatment failure presents a

biased view of the evolutionary processes involved: 95%
of all TB patients infected with fully drug-susceptible
strains are successfully treated [26]. As a result, we do
not, at present, fully understand what selective forces
shape populations under successful treatment. It is un-
clear how treatment efficacy impacts the dynamics of
bacterial populations within the host and ultimately how
it affects clinical outcomes. Moreover, we do not know
whether successful drug treatment leads to the enrich-
ment of mutations that may be beneficial to the bacter-
ium during future treatments. The significance of this
possibility could explain the fact that resistance rates are
highest among TB patients that have previously been
treated [26]. We therefore sought to understand the im-
pact of treatment efficacy on TB from the perspective of
population genetics, to try to understand how close we
come to resistance every time we treat.
We explored the nature of selective forces that shape

Mycobacterium tuberculosis complex (MTBC) popula-
tions by investigating their dynamics within the human
host. We used an approach based on very deep popula-
tion WGS (approximately 1000-fold read coverage per
site) of serial sputum isolates from TB patients with
high bacillary loads undergoing treatment. We report
that MTBC populations in the human host are genetically
more dynamic than previously thought. Furthermore, the
presence and extent of drug pressure influences the ob-
served changes. Our findings shed light on the genetic
principles that underpin well-established clinical practices:
combination therapy based on at least four effective drugs
constrains the adaptive landscape of MTBC through puri-
fying selection. Conversely, treatment with fewer than four
effective drugs alleviates this constraint, allowing positive
selection of resistance determinants.

Results
Sampling of bacterial populations in the host
We collected sputum samples from 12 TB patients at
entry, 2, 4, 6, and 8 weeks after commencement of treat-
ment. Three sputum samples were obtained at each time
point for each patient. The resistance profile of the initial
MTBC isolates was determined with standard phenotypic
drug susceptibility testing (Additional file 1: Table S1) and
is summarized together with the frequency of sampling in
Fig. 1. As treatment progressed, bacterial loads in sputum
decreased at varying rates, leading to variation in the
number of culture-positive samples we obtained from
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each patient. The composition of the drug combination
given to each patient differed based on the available
information on the resistance profile of the infecting
bacteria and the judgment of the treating physician
(Additional file 1: Table S2).
Treatment guidelines provided by the World Health

Organization [46, 47] state that patients should receive
a combination of at least four effective antibiotics.
Based on these recommendations, we could assign pa-
tients to one of two groups: patients 1–8 received four
or more (4+) effective drugs, while patients 9–12 re-
ceived fewer than four effective drugs. This grouping
reflected the resistance profiles of infecting strains as
well, since all patients receiving fewer than four drugs
were also infected with highly resistant strains. The effi-
cacy of treatment was reflected in the rate of bacterial
clearance. We used time to culture positivity as a proxy
for intra-patient bacterial burden in a regression ana-
lysis. As expected, we observed a significant reduction
in bacterial burden over time in patients who received
at least four effective drugs (time to positivity increased
by 1.15 days per week of treatment, p < 0.001). The rate
of load reduction was significantly lower in patients
receiving fewer than four effective drugs (time to
positivity slowed to increase by 0.32 days per week of
treatment, p < 0.05; Additional file 1: Figure S1; see
Additional file 2: Table S6 for raw data).

Our goal was to gain a comprehensive view of the
overall heterogeneity of MTBC populations within the
host lung and follow their dynamics over time. To
achieve this, we performed deep sequencing of the en-
tire bacterial population recovered from sputum iso-
lates (see Additional file 1: Table S3 for sequencing
depth estimates). We focused our analysis on single nu-
cleotide polymorphisms (SNPs). For technical reasons
we did not explore the impact of small insertions and
deletions or gross chromosomal alterations such as du-
plications of genomic regions. Structural discrepancies
between the strains included in our study and the refer-
ence genome could give rise to some, albeit small, pro-
portion of the variation we detect. While duplications
of genomic regions have been shown to occur in MTBC
[48, 49], they are relatively rare; we therefore expect the
impact of such variation to be relatively small. We then
devised a noise-filtering algorithm to minimize the im-
pact of sequence heterogeneity introduced by culture,
PCR, sequencing, and mapping errors. We calibrated
the filtering parameters by incorporating information
about the error profiles from simulated sequencing
reads and sequencing data from individual MTBC col-
onies expanded in growth medium (Additional file 1:
Figures S2–S4; and Additional file 1: Section 2). We de-
fined two types of SNPs in our samples: intra-host fixed
SNPs (f-SNP) where all of the sequencing reads from a

Fig. 1 Characteristics of the study population. Our study was based on serial sputum isolates obtained from 12 TB patients at 2-week intervals.
We obtained three sputum samples at each time point and cultured each on Löwenstein–Jenssen solid medium (L-J) or in a mycobacterial
growth indicator tube (MGIT); we chose one culture per patient per time point for deep sequencing. Eight patients (P01–P08) were treated with
a combination composed of at least four effective antibiotics (sampling indicated by red circles). While four patients (P09–P12) were treated with
fewer than four effective antibiotics (grey circles). Phenotypic drug susceptibility testing (Phenotypic DST) and genotypic drug susceptibility testing
(Genotypic DST) results are shown for each patient with light blue dots indicating drug susceptibility (DS) and red dots reflecting drug resistance
(DR). The antibiotics are abbreviated as: RIF rifampicin, INH isoniazid, EMB ethambutol, STR streptomycin, INJ injectable aminoglycosides, FQ
fluoroquinolones, PZA pyrazinamide. Resistance profiles of strains are given as: DS drug susceptible, INH-R isoniazid monoresistant, MDR multidrug
resistant, P-XDR pre-extensively drug resistant, XDR extensively drug resistant. MDR is defined as RIF and INH resistant, XDR is MDR with additional
resistance to FQ and INJ, and P-XDR is MDR with either FQ or INJ resistance

Trauner et al. Genome Biology  (2017) 18:71 Page 3 of 17



population supported a base that is different from the
reference; and intra-host variable SNPs (v-SNP) where
only a fraction of the reads supported a base that was
different from the reference, while the remaining reads
were consistent with the reference. All variable posi-
tions had only two alleles—wild type and mutant.
The number of f-SNPs was constant over time in

most patients (Additional file 1: Table S4). The excep-
tion was patient 11, where there was an apparent de-
crease in f-SNPs at week 6. This patient experienced a
cavitation of a large granuloma during the course of
treatment, which may have led to a transient change in
the major clone found in sputum resulting in what
were f-SNPs from the dominant clone to decrease in
frequency and become v-SNPs [50]. Overall, we de-
tected 492 v-SNPs that fulfilled our criteria across all
the patients and time points. The number of detected
v-SNPs decreased slightly with decreasing bacterial
loads within patients, but was not biased by sequencing
depth (Additional file 1: Figure S6). The observation
that treatment decreased the overall heterogeneity of the
population is in line with the expectation for a dying
population (Additional file 1: Section 3; Additional file 1:
Figure S5). Importantly, the number of v-SNPs varied be-
tween serial samples from each patient, reflecting bacterial
population dynamics in the lung (Additional file 1:
Figure S7). Taken together, these findings suggest that
sequencing errors were unlikely to contribute to v-SNP
heterogeneity, allowing for the biological interpretation
of our data. Complete lists of v-SNPs and f-SNPs are
available in Additional file 3: Table S7 and Additional
file 4: Table S8, respectively.

Sputum samples are heterogeneous
MTBC is normally confined within multiple spatially
segregated anatomical structures called granulomas.
Granulomas are dynamic structures resulting from an
orchestrated immune response to MTBC infection and
are located in the lung or adjacent lymph nodes. The re-
lationship between bacterial populations in granulomas
and those in the sputum is not well understood; how-
ever, it is widely accepted that granulomas with access to
airways serve as the source of bacteria in the sputum
[51]. As a result, the transition of MTBC from granu-
loma to sputum is likely to be a stochastic process. We
therefore reasoned that analysis of several sputa obtained
from the same patient within a short time span would
give us an indication of sampling consistency.
We sequenced three sputum samples obtained from

patient 12 on the day of enrollment to address sampling
consistency (Fig. 2a–c). We detected 36 v-SNPs in total
across the three parallel sputum samples; only four of
these were detected in all samples, and five were shared
by two separate samples. The remaining 27 alleles (75%)

were unique to each sample, indicating that we are likely
to routinely underestimate the true heterogeneity of the
MTBC population in a patient’s lung. Interestingly, the
distributions of allele frequencies of shared and unique
v-SNPs were not significantly different (Mann–Whitney
U-test, p = 0.86), suggesting that observing the same v-
SNP across multiple samples was not simply a function
of the estimated v-SNP abundance. We then used data
from later time points to determine what proportion of
the v-SNPs identified in enrolment samples were repeat-
edly detected and classify them as recurrent. The majority
of variants that were detected in more than one parallel
sample were also recurrent (highlighted in yellow in
Fig. 2b), showing that we are re-sampling part of the het-
erogeneity, allowing for biological inferences.
Looking at the identity of the affected genes, we

found that two contained multiple v-SNPs: mmpR
(Rv0678) and glpK (Rv3696c) contained four and ten
v-SNPs, respectively. The former is a known mediator
of clofazimine and bedaquiline cross-resistance [52],
while the later was shown to be essential for growth
on glycerol, but dispensable in the mouse model of
infection [53]. Most of the mmpR v-SNPs accounted
for a very small proportion of the overall population
(1–5% of the population) but were nonetheless mostly
stable over time—recurrent. glpK variants on the other
hand were all unstable despite some of them being
relatively abundant in some samples, accounting for
20–30% of the population. In fact, we did not observe
any difference in variant frequency between recurrent
and unstable v-SNPs in the parallel samples from pa-
tient 12 (Mann–Whitney U-test, p = 0.24), again sug-
gesting that the temporal stability of variants was not
simply a function of abundance, but rather a reflection
of an ongoing biological process. Furthermore, this
also provides evidence of the co-existence of separate
populations of MTBC within a host.
Quantifying the relative abundance of individual alleles

in sputa at different times during treatment therefore
allows us to approximate the changes in the composition
of bacterial populations within each patient. A naïve
overview of temporal dynamics of recurrent v-SNPs
revealed four types of allele trajectories: ascending,
descending, constant, and sporadic (Fig. 2d), showing
that MTBC populations within the host are both dynamic
and heterogeneous.

Intra-host heterogeneity is driven by very rare variants
We started with a general analysis of population hetero-
geneity within our isolates by combining all the detected
v-SNPs into a folded site frequency spectrum (SFS; Fig. 3a).
The intra-host SFS had a leptokurtic distribution with a
strong positive skew. The majority of the detected sequence
heterogeneity therefore resulted from an abundance of rare
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alleles in the population—approximately 80% of the total
heterogeneity was accounted for by v-SNPs with a fre-
quency of less than 20%. This degree of variation is higher
than reported previously [54–56] and shows that MTBC
might explore its mutational space to a greater extent than
previously thought. Importantly, the intra-patient SFS was
very similar to the inter-host SFS reported by Pepperell and
colleagues [57], suggesting that forces shaping the diversity
at the host population level are already prominent within
patients, before the bottleneck of transmission.
Unlike the comparison of frequency distributions at

the initial time point in patient 12, which showed no dif-
ference between frequencies of recurrent and unstable
v-SNPs, expanding the analysis to the whole sample set
showed that, overall, recurrent v-SNPs occurred at higher
frequencies in the sampled populations. This is illustrated
by the cumulative distributions of allele frequencies, which

were markedly different when comparing recurrent
and unstable v-SNPs (Fig. 3a, inset). We also found
evidence of treatment shaping MTBC heterogeneity:
the cumulative distributions progressively shift to-
wards higher frequency alleles as treatment progresses
(Additional file 1: Figure S8d).
The distribution of allele frequencies in MTBC implies

that unstable, rare alleles are either constantly turned
over or never able to expand beyond a certain point
within the host. The first possibility would be consistent
with a scenario where minor variants continuously bud
from a predominant clone but are then selected against
and therefore do not expand within the population
(Fig. 3b). The second possibility would suggest that there
is no predominant clone; instead, the overall MTBC
population in the host is composed of a number of sep-
arate, but related, small populations (Fig. 3c), as has

A D

B

C

Fig. 2 Sputum samples under-represent the true genetic diversity of MTBC populations in the lung. We sequenced three samples from the enrollment
time point of patient 12 and compared the detected population heterogeneity. a Mean frequency of detected v-SNPs across samples. Four v-SNPs
affecting Rv0678 (mmpR) and ten v-SNPs affecting Rv3696c (glpK) are marked with red lines. b Detection pattern of v-SNPs across the three sputum
samples. v-SNPs were classified as recurrent if they were detected in at least one sputum sample from a later time point. c Temporal detection pattern
for listed v-SNPs across sputum samples isolated from patient 12 2, 4, 6, and 8 weeks post-enrollment. d Patterns of v-SNP temporal dynamics detected
across all patients. One trajectory per type is highlighted for illustration purposes
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been proposed for Burkholderia dolosa colonization of
cystic fibrosis patients [58] and more recently for un-
treated tuberculosis patients [56]. In this scenario,
smaller populations would then be sampled sporadically,
resulting in the overall appearance of instability. Studies
of the dynamics of MTBC infection support both of
these possibilities [14, 42, 50, 51, 55, 59]. An important
distinction between the two scenarios is that the first re-
lies on effective purifying selection to prune away minor
variants, which in this context should bear a fitness cost;
while in the second scenario the structured small popu-
lations would most likely be shaped by genetic drift and
therefore less affected by the fitness of mutants. This
distinction is relevant from the perspective of drug re-
sistance: mutations conferring drug resistance often
carry a fitness cost [60–63] and a predominance of puri-
fying selection could therefore decrease the probability
of resistant clones emerging during patient treatment,
while the predominance of drift would not.

Treatment efficacy impacts population dynamics
Since the generation of mutations is effectively random,
while their impact on phenotype is not, deviation from the
expected behavior of synonymous and nonsynonymous

mutations can be used to infer underlying selection pro-
cesses and distinguish genetic drift from purifying selec-
tion. We combined the ability to describe and analyze the
temporal dynamics of recurrent v-SNPs with the fact that
our patients received drug treatments of varying efficacy
to address the impact of treatment on MTBC population
dynamics.
To follow the fate of mutations during treatment, we

considered the changes in population heterogeneity as a
function of our ability to detect specific alleles over time.
The presence and absence of a particular allele can be
thought of as two distinct and exhaustive states. We thus
set up a Markov chain to describe allele dynamics within
the population and used allele frequency data from pa-
tients to estimate the relevant transition probabilities
(Fig. 4a).
We observed that, as expected based on the frequency

distributions of recurrent and unstable alleles, v-SNPs
making up the majority of the genetic heterogeneity were
also mostly transient in nature. Only 19.7% (13.5–25.7%,
confidence interval (CI)95%) of v-SNPs in patients
treated with four or more effective drugs and 29.0%
(23.1%–35.3%, CI95%) of v-SNPs in patients treated with
fewer than four effective drugs were detected at successive

A B

C

Fig. 3 Structure of MTBC populations in TB patients. a Folded site frequency spectrum: a histogram of estimated variable allele frequencies within
MTBC populations in TB patients. Cumulative distributions of allele frequencies for all variable SNPs (v-SNPs) are shown in black—80% of all the v-SNPs
are present at an estimated frequency of less than 20% (dotted line). The corresponding distributions for v-SNPs that were detected in sputa from a
single time point (unstable, yellow) or from multiple time points (recurrent, blue) are also shown. The observed distribution of alleles could arise from
b a dominant clone of MTBC colonizing the lung and minor genetic variants continuously emerging from it which are selected against by purifying
selection. Alternatively, c a large number of physically separated populations each produce minor variants. In this setting selection would be less
efficient and population dynamics would be driven by genetic drift
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time points. We proceeded to estimate the transition
probabilities for synonymous and nonsynonymous muta-
tions separately. Synonymous v-SNPs were more likely to
be stable than nonsynonymous v-SNPs in patients receiv-
ing four or more drugs: 29.7% (19.4–41.7%, CI95%) and
12.0% (6.0–18.9%, CI95%), respectively. There was also a
slight indication that synonymous mutations may be more
likely to emerge within the population of patients receiv-
ing four or more effective drugs (Fig. 4b). Neither of these
observations were true for patients receiving fewer than
four drugs, whose transition probability estimates showed
no difference between synonymous and nonsynonymous
mutations (Fig. 4c; Additional file 1: Table S5).
By definition, we cannot apply the same temporal

dynamics analysis to unstable v-SNPs. However, we can
determine whether there are any discrepancies between
the observed and expected number of detected synonym-
ous and nonsynonymous mutations present in the popula-
tion. A tool commonly used to measure this is dN/dS
[64]. In its canonical form, dN/dS is not suited to the
analysis of genetic variation within evolving populations.
This is because the measure of dN/dS relies on comparing
mutations that are fixed within independently evolved

populations (substitutions). Violating these assumptions
compromises the ability to infer the strength of selec-
tion based on the absolute value of dN/dS. Nonetheless,
the qualitative inference drawn from dN/dS in single
populations mirrors that calculated for separate popula-
tions [65]. We therefore devised a measure based on these
limitations, which we call the proportion of nonsynon-
ymous to synonymous mutations (pNS). Conceptually,
pNS provides a comparable insight as dN/dS; however, for
its calculation we focus explicitly on codons that are mu-
tated within a population when compared to a reference
(polymorphisms). We then performed an in silico muta-
genesis of affected codons to derive a null distribution of
pNS under the scenario of neutral evolution. The com-
parison of pNS values calculated for our patients and
those obtained by simulation allowed us to query the dir-
ection of selection.
We calculated the pNS for each sample using the ob-

served SNPs. As a first step, we wanted to interrogate the
pNS of f-SNPs across all patients. We found that it was
significantly lower than expected under a scenario of neu-
tral evolution (Mann–Whitney U-test, p = 2.35 × 10−5;
Fig. 5a), thus supporting a role for purifying selection and

B

A

C

Fig. 4 Allele dynamics in patients are congruent with purifying selection acting on MTBC populations treated with an efficacious drug combination.
a We framed the allele dynamics within patients as a Markov process where alleles are either detected (D) or not detected (ND). We estimated each
transition probability by re-sampling (N = 1000) the data with replacement. We stratified the SNPs by treatment efficacy experienced by the population
and translational impact. The estimated transition probabilities for all alleles separated by translational impact showing the 95% confidence interval for
b all v-SNPs in efficaciously treated patients (red symbols), c all v-SNPs in non-efficaciously treated patients (dark gray symbols). NSY nonsynonymous,
SYN synonymous
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recapitulating several reports in the literature [57, 66, 67].
When analyzing v-SNPs, we found that treatment had an
impact on pNS. Specifically, patients treated with four or
more drugs had a lower pNS than expected in the absence
of selection (Mann–Whitney U-test, p = 1.10 × 10−5;
Fig. 5b), while patients receiving fewer than four drugs did
not (Mann–Whitney U-test, p = 0.29, Fig. 5c). We found
no significant differences in pNS values calculated for
time points across individual patients in a given category
(Kruskal–Wallis H-test, p = 0.44 for patients receiving four
or more drugs and p = 0.09 for patients receiving fewer
than four drugs).
The pNS and Markov chain dynamics analyses

provided congruous results pointing to an increased
stability and possibly accumulation of synonymous mu-
tations within MTBC populations in patients who re-
ceived at least four effective drugs. In contrast, we
observed no such trend in patients receiving fewer than
four drugs. This disparity suggests that MTBC popula-
tions are subject to different selective forces depending
on treatment efficacy. Furthermore, they point to puri-
fying selection as an important mechanism shaping
MTBC populations within patients receiving at least
four effective drugs. This is a surprising finding, as

antibiotic treatment is normally associated with positive
selection of resistance determinants and compensatory
mutations [31, 61, 68]. However, selective forces do not
operate on the whole genome in a homogeneous man-
ner [69]. It is therefore still possible that specific loci
on the genome are under positive selection, but the sig-
nal is too weak to be detected on a genome-wide level.
Analogous findings have been reported recently [55]. In
light of these considerations, we explored the data for
evidence of positive selection within our populations.

Positive selection can occur with insufficient drug
pressure
Extensive clinical evidence combined with multiple se-
quencing studies focusing on treatment failure provide
ample examples of positive selection for antibiotic resist-
ance traits from MTBC populations within a single patient
[41–43, 55, 70]. Isolates from one of the patients in our
study (patient 10) who received fewer than four effective
drugs expanded their resistance spectrum in the course of
treatment (Fig. 6). The gain of fluoroquinolone resistance
manifested as the emergence of two separate populations
of gyrase mutants. Four weeks after treatment began, ap-
proximately 40% of the reads from the patient supported a

Fig. 5 Efficacious treatment leads to a predominance of purifying selection of MTBC populations. a The proportion of nonsynonymous to
synonymous mutations (pNS) for observed fixed SNPs in each patient (N = 12). We used computer simulation to estimate the outcome of
mutating the same codons as were affected in patients but under a neutral scenario of genetic drift. b pNS calculated for each efficaciously
treated patient at each time point (N = 30) with the corresponding neutral estimate. Patients given efficacious treatment show a pNS that is
lower than expected in the absence of selection. c pNS calculated for each non-efficaciously treated patient at each time point (N = 21) with
the corresponding neutral estimate. Patients given non-efficacious treatment do not show a significant decrease of pNS when compared to the
expectation of no selection. All reported p values were calculated with the Mann Whitney U-test comparing the observed pNS to a simulated
result generated using the assumption of genetic drift. n.s. not significant
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mutation in gyrA leading to an alanine to valine substitu-
tion at amino acid position 90 (A90V). While this clone
eventually swept to fixation, it had to compete against a
second clone carrying a substitution of aspartate to glycine
at amino acid position 94 (D94G). Both of these mutations
are known to lead to fluoroquinolone resistance [71]. We
were able to discern the two as separate clones because
two mutations (C to T at genomic position 1,284,167 and
C to T at genomic position 3,767,194) shared temporal al-
lele frequency trajectories with D94G but not A90V.
We were able to observe evidence of clonal expansion

in 5 of our 12 patients (Additional file 1: Figure S9). In
one case this expansion consisted entirely of synonymous
mutations, in another a single mutation in an intergenic
region swept across the population, while the remaining
three cases included the expansion of nonsynonymous
mutations (Additional file 1: Figure S10). Only MTBC in
patient 10, described earlier, showed the expansion of
clones carrying mutations known to confer an advantage
in the face of drug pressure. Clonal expansion dynamics,
however, are not necessarily evidence of positive selection
and can occur readily in response to demographic changes
(Additional file 1: Section 3) as well as genetic drift [72].
We therefore expanded our analysis to identify an exces-
sive accumulation of mutations within segments of the
genome that have previously been implicated in adapta-
tion to drug pressure [38, 39, 55, 73].
We considered three gene sets relating to known

adaptation to drug stress. These contained either bona
fide drug resistance genes [73], genes associated with
adaptation to drug resistance between patients [38, 39],

or genes involved in mycolate biosynthesis that were re-
ported to mediate adaptation to resistance within pa-
tients [55]. We also included a set of known T-cell
antigens [74] under the assumption that the interplay
between the pathogen and the host adaptive immune
system may impose a positive selection pressure on the
MTBC genome (see Additional file 5: Table S9 for a list
of genes). We used a one-tailed binomial test to query
whether there was an excess of mutations in the above
gene sets compared to what would be expected given
their size. We also assessed whether nonsynonymous
mutations were over-represented in the accumulated v-
SNPs compared to a schema of random mutation accu-
mulation. We were unable to detect any evidence for ex-
cessive mutation in patients receiving four or more
effective drugs (Table 1). By contrast, in patients treated
with fewer than four effective drugs we identified an ex-
cess of mutations in validated drug target genes (bino-
mial test p value 0.001), highlighting the existence of a
drug pressure threshold that is necessary to suppress the
emergence of resistance. If this threshold is not reached,
as was the case in our patients receiving fewer than four
drugs, the evolutionary constraint on the population is
insufficient, allowing bacteria to acquire resistance.

Discussion
We combined very deep DNA sequencing with serial
sputum sampling to gain a detailed view of MTBC
population structure and dynamics within patients
undergoing treatment. The first feature to emerge from
our data was the wealth of genetic heterogeneity that is
present in the population. Strikingly, the major contrib-
utors to genetic diversity were very rare variants that
were detected only once across multiple sputum sam-
ples obtained from individual patients. There are sev-
eral possible explanations for this result. The most
trivial stems from the sequencing depth and the analyt-
ical challenge of distinguishing true minor variants
from sequencing errors. While we did not systematic-
ally confirm individual v-SNP calls, an important limita-
tion to our analyses, we deliberately chose a combination
of stringent criteria to limit the impact of false positive v-
SNP calls. Our approach mirrored previously published
strategies [50, 56], and we excluded a large number of
low-frequency v-SNPs from further analysis (Additional
file 1: Figure S4). However, each sampling included an in
vitro expansion of the MTBC population during bacterial
culture prior to sequencing; we therefore cannot com-
pletely exclude the possibility that part of the observed
variation arose during the culturing step. Nonetheless, we
posit this is unlikely, as the number of v-SNPs varied over
time and across patients. Moreover, we observe signifi-
cantly more v-SNPs at each time point in patients treated
with fewer than four drugs (Additional file 1: Figure S7), a

Fig. 6 Emergence of fluoroquinolone resistance in patient 10 is driven
by selection and modulated by clonal interference. The trajectory of
estimated allele frequencies for two independent v-SNPs in gyrA:
alanine 90 to valine (GyrAAla90Val, yellow dots) and aspartate 94 to
glycine (GyrAAsp94Gly, blue dots)
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fact that reflects probable biological differences among pa-
tients, making a consistent technical bias improbable. An
alternative explanation for the high abundance of transient
minor variants is imperfect sampling. It is possible that
the populations sampled through sputum do not fully re-
flect the true heterogeneity of MTBC populations in the
lung. This possibility illustrates the variable probability of
granulomas gaining access to airways and might not pro-
vide any further indication of the selective forces shaping
the MTBC population. We describe evidence for the sto-
chastic nature of sampling in our data as the incongruence
between parallel re-samplings of the same patient (Fig. 2).
In a recent report of a detailed sampling of MTBC popu-
lations across several foci of infection within deceased TB
patients, Lieberman et al. [56] showed a large genetic di-
versity within each patient that may not be completely
represented in tracheal aspirates—a proxy the authors
used for sputum samples. Furthermore, several studies
found a comparable degree of genetic diversity of MTBC
within and between hosts [42, 54, 59]; these observations
complement radiological findings of granuloma dynamics
[14]. In the majority of these studies, authors comment on
the transience of the detected polymorphisms and high-
light the importance of sampling the host population as
fully as possible. The latter is crucial for drawing conclu-
sions regarding transmission chains and determining
resistance profiles based on nucleic acid amplification
techniques. Our findings complement these views and
emphasize the fact that sputum samples are not uniform
or equivalent. In addition they highlight a need for further
studies aimed at improving on diagnostic algorithms, to
ensure sufficient sampling in subpopulations of patients
that may return erroneous results. Examples of such sub-
groups include patients with prior history of TB, patients
with compliance issues, and patients that are likely to have
a mixed infection. An upshot of the limited compositional
congruence across sputum samples is that sufficiently
frequent sampling should reflect the population to a suit-
able degree. Specifically, the fact that 84.4% (314/374

polymorphic sites) of the minor alleles are only ever
detected in a single sputum sample suggests that there
may be something beyond stochastic sampling that could
account for allele instability within our patients. One possi-
bility is that bacteria giving rise to transient heterogeneity
represent a specific subset of resolving granulomas. An al-
ternative possibility is that the transience of many alleles
has a biological cause and it reflects a dynamic exploration
of the mutational space constrained by selection.
Having grouped the patients based on the number of

effective drugs they received, we were able to leverage the
temporal dynamics of minor alleles to investigate the
selective forces that shape MTBC diversity. While the fact
that the pNS metric has not been extensively character-
ized calls for a cautious interpretation of our results, we
conclude that purifying selection is the main force shaping
MTBC populations within patients receiving at least four
effective drugs. The combined effect of multiple drugs
seems to ensure that resistance to any individual drug
poses too much of a fitness disadvantage to be retained
within the population. An important consequence of the
virtual absence of horizontal gene transfer in MTBC is
that all loci are linked; as a result, variants providing only
a slight advantage are more likely to be lost from the
population since the benefit they provide is probably less
than the cost of any linked deleterious mutation. This
process is termed background selection [75, 76] and may
be the underlying mechanism suppressing the signal for
positive selection in our study and MTBC populations at
large [57]. These considerations no longer hold in patients
receiving fewer than four effective drugs, where the com-
bined effect of drugs is inadequate and does not impose a
sufficient fitness cost to the emergence of resistance. Our
conclusions add an important piece to the understanding
of the interplay between host immunity and antibiotics in
controlling MTBC infection. Lieberman and colleagues
[56] reported that, in the absence of antibiotic treatment,
MTBC within patients is likely to be constrained by
purifying selection, while positive selection of antibiotic

Table 1 Excessive mutation of MTBC gene sets that are likely targets of positive selection

4+ effective drugs <4 effective drugs

Gene set Na Excessive mutationb Excess NSYc Excessive mutation Excess NSY

Drug resistanced 13 0/100 (0.501) 0/0 (1.000) 5/87 (0.001) 5/5 (0.177)

Drug resistance associatede,f 166 10/100 (0.545) 4/10 (0.987) 6/87 (0.946) 6/6 (0.121)

Mycolate superpathwayg 54 3/100 (0.881) 1/3 (0.964) 5/87 (0.229) 3/5 (0.876)

MTBC T-cell antigensh 300 14/100 (0.153) 10/14 (0.426) 6/87 (0.550) 6/6 (0.121)
aNumber of genes in the gene set
bProportion of mutations in gene set, p value calculated with a one-sided binomial test
cProportion of NSY mutations in gene set, p value calculated with a one-sided binomial test
d[73]
e[38]
f[39]
g[55]
h[74]
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resistance traits is prevalent in single patients failing
treatment [41–43, 70]. The question arises: why does the
immune system not constrain the emergence of resist-
ance? Our findings indicate that the fitness landscape of
MTBC populations treated with insufficient drugs allows
for resistance and infectiousness to co-exist. Imposing suf-
ficient drug stress is therefore necessary to close off those
evolutionary trajectories.
The main drivers of the global genetic diversity of

MTBC are believed to be the recent demographic ex-
pansion of the human population combined with gen-
etic drift and purifying selection [57, 66]. These
features speak of a pathogen that is well adapted to the
human host [77]. It is therefore important to highlight
that the dynamics we report for patients receiving at
least four effective drugs reflect this high degree of
adaptation. They are markedly different from those ob-
served during chronic infection of cystic fibrosis patients
with opportunistic B. dolosa [58, 78] or Pseudomonas
aeruginosa [79, 80]. Opportunists need to undergo signifi-
cant adaptation to the new host environment. This is
manifested by clear indication of positive selection
through convergent evolution of traits necessary to estab-
lish and maintain infection—pathoadaptive mutations.
The dynamics of MTBC differ also from those of other
human-adapted bacteria. The analysis of within-patient
evolution of Helicobacter pylori and Staphylococcus aureus
both speak of an ongoing purifying selection, but with a
component of diversifying selection, where the continued
carriage of these bacteria within the human host is
dependent upon their continuous immune escape [81, 82].
We found no evidence of diversifying selection acting on
known T-cell antigens of MTBC, reinforcing the view that
these antigens are under purifying selection, reflecting the
strategy MTBC uses to subvert host immunity [67, 74, 83].

Conclusions
Combination therapy in TB is effective at suppressing
drug resistance by restricting the evolutionary options
through purifying selection. However, unlike the accepted
view that MTBC is genetically stable [84], we find evi-
dence of considerable and perhaps continuous turnover of
genetic variants within hosts. As a consequence, the ero-
sion of drug pressure, through the administration of a
suboptimal treatment regimen, allows the emergence of
drug-resistant clones. Importantly, these clones may
already be present in the constantly generated genetic di-
versity of the MTBC populations within the host. This
possibility explains why it is often the case that multiple
clones carrying resistance to the same drug arise virtually
simultaneously within a patient—we report the emergence
of two fluoroquinolone-resistant clones within patient 10
(Fig. 6), and similar examples have been reported by many
studies [41–43].

The importance of timely drug susceptibility testing
and appropriate regimen composition is well established.
We would like to put forward the suggestion that, in
some cases, susceptibility testing should be done on
multiple parallel sputum samples. Our observations re-
garding the heterogeneity of the composition of sputum
samples clearly shows that even three samples obtained
within 24 h from each other are not uniform and may
result in different resistance profiles. Such information
should lead to better treatment and lower probability of
resistance expansion. Finally, our findings have clear im-
plications for future clinical trials designed to test the ef-
ficacy of novel treatment regimens. We propose that
monitoring population dynamics within patients during
trials would provide an informative metric for assessing
regimen efficacy. Specifically, effective regimens should
carry the signature of purifying selection.

Methods
Study cohort and sample collection
The study to investigate the range of tuberculosis pres-
entation and treatment (NCT01071603, clincaltrials.gov)
conducted in Henan Provincial Chest Hospital (HPCH)
was approved by the HPCH and National Institute of
Allergy and Infectious Diseases institutional review
boards. The methods of this study were carried out in
accordance with the approved guidelines and written
informed consent was obtained from the subjects prior
to the study. During this study, 52 smear-positive TB pa-
tients were enrolled. For these patients, time-serial iso-
lates were collected at seven time points: at enrollment
(before treatment) and 2, 4, 6, 8, 16, and 24 weeks after
treatment. At each time point for each patient, three
sputum samples were collected (night sputum, morning
sputum, immediate sputum). As treatment progressed,
some patients became both smear- and culture-negative.
As a result the number of collected sputum samples
varied. Thus, from the 52 patients, we selected 12 that
presented more serial isolates and were more represen-
tative regarding differential drug susceptibilities/treat-
ment efficacies. We focused specifically on the first 8
weeks of treatment. The isolates of the 12 patients are
described in Fig. 1. Among the 12 patients, five were
drug-sensitive (patients 1–5), three were INH-resistant
(patients 6–8), two were MDR (patients 9 and10). None
of these ten patients had prior history of TB. Two patients
had MDR-TB and had been treated before for active TB
(patients 11 and 12). Patients 1–8 received four or more
effective drugs while patients 9–12 received fewer than
four effective drugs.

Isolate culture and deep whole genome sequencing
Each sputum sample was decontaminated and inocu-
lated onto both solid Löwenstein–Jensen (L-J) and liquid

Trauner et al. Genome Biology  (2017) 18:71 Page 11 of 17



mycobacterium growth indicator tube (MGIT) broth.
This resulted in three L-J cultures and three MGIT
cultures at each time point. Cultures from the early
weeks of treatment often had hundreds of colonies on
the L-J medium. We scraped the colonies from the slope
surface and extracted DNA from the population using
the CTAB method as described before [42] for deep
population sequencing. As treatment progressed and the
bacterial load in the patient decreased, the number of
colonies on L-J medium decreased. In these cases we ex-
tracted DNA from whole MGIT cultures to represent
the population of the bacteria in the patient. Overall, 39
isolates were sequenced from L-J medium and 14 isolates
from MGIT medium (Additional file 1: Table S3). Whole
genome sequencing was performed on an Illumina HiSeq
2000 instrument and the average sequencing depth was
~1000-fold for each isolate. We generated between 6–10
GB of sequencing data for each sample.

Empirical sequencing error estimation
We aimed to evaluate the impact of PCR and sequen-
cing errors as well as the emergence of minor variants
during the in vitro expansion of bacterial colonies. We
used a two-pronged approach. On the one hand, we
picked two single colonies from L-J medium and ex-
panded them in vitro. These colonies came from sputa
that were not related to those used for the rest of the
study. We extracted the DNA of each single colony as
described above and prepared two DNA libraries for
each single colony, giving us a total of four samples.
Each library was sequenced on an Illumina HiSeq 2000
platform with the same strategy as above. On the other
hand we used ART [85] to simulate synthetic next-
generation sequencing reads using the genome of M.
tuberculosis CCDC5079 (GenBank CP001641) as a tem-
plate. We simulated reads using our own read error
model and quality profiles with parameters set accord-
ing to our sequencing platform and strategy. A total of
500 synthetic paired-end sequencing files were simu-
lated, with an average depth of 850.

Identification of fixed and variable mutations
The pipeline we used for fixed mutations and unfixed
mutations obtained from all our sequencing runs and
read simulations was published before [42]. Briefly,
scythe (https://github.com/ucdavis-bioinformatics/scythe)
and sickle (https://github.com/ucdavis-bioinformatics/
sickle) were used for read trimming, bwa [86] was used for
mapping, and SAMtools [87] was used for SNP calling.
Two reference genomes were used as template: one was
the standard reference strain, M. tuberculosis H37Rv
(GenBank AL123456) [88], and the other was CCDC5079
(GenBank CP001641) [89], a Beijing isolate genetically
close to our strains (see Additional file 1: Figure S11 for

more phylogenetic details). We used LoFreq [90] and
VarScan 2 [91] to call intra-host variable mutations (v-
SNPs) and considered only congruous calls. We further
defined a set of thresholds to exclude sequencing errors
and false positives. v-SNP calls were only made if the
mapping quality of the read was above 30 and the
Phred score for base quality exceeded 20. Further, we
required that each v-SNP was supported by at least five
reads, with no fewer than two reads for each sequencing
direction. We discarded v-SNPs for which we detected
evidence for strand bias in the reads supporting it. Next
we excluded v-SNPs for which support was significantly
enriched (Kolmogorov–Smirnov test) in the terminal parts
of the read. We ignored all SNPs that arose in repetitive
regions of the genome (e.g., PPE/PE-PGRS genes). We
manually removed v-SNPs that showed patterns consist-
ent with sequencing noise (e.g., occurrence of the same
minor variant substitution in several patients, spurious
proximal mutations). Finally, we considered only v-SNPs
whose frequencies were estimated to be ≥1.5% in at least
one sampled population.

Data analysis and code availability
We performed all data manipulation and analyses using
custom scripts written in Python, including specialized
packages NumPy, SciPy [92], pandas [93], and scikit-learn
[94], and interfaced with iPython [95]. We generated the
majority of our figures using the Python matplotlib [96]
package. We performed mixed model linear regression
analyses using the Python package scikit-statsmodels [97].
Statistical analyses were based, where appropriate, on
non-parametric methods. Mann–Whitney U-test was
used for distribution comparison of pNS. 95% confidence
intervals were derived empirically using re-sampling tech-
niques. Excess mutation of genetic regions was examined
using Fisher’s exact test, paired with a downstream one-
sided binomial test to establish the likelihood of the ob-
served outcome.
With the exception of sequencing data (see accession

numbers below), we deposited all the data into a public
repository (doi:10.5281/zenodo.322377) and made all
the analysis scripts available through a public repository
(doi:10.5281/zenodo.345135) and at GitHub (https://
github.com/swisstph/TBRU_serialTB).

Site frequency spectrum analysis
We estimated allele frequencies by computing the propor-
tion of reads supporting a mutant allele within the total
number of reads that mapped to a given region, provided
they fulfilled the quality criteria outlined in “Identification
of fixed and variable mutations”. We obtained estimates of
allele frequencies using LoFreq, as outlined in “Identifica-
tion of fixed and variable mutations”. We produced the
folded site frequency spectrum by plotting a histogram of
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all the estimated allele frequencies for v-SNPs. SNPs that
were fixed within the population at the point of diagnosis
were not included.

Markov chain analysis of allele dynamics
We explored the temporal dynamics of individual al-
leles found in our samples by assuming that the stabil-
ity of alleles is random. This allowed us to describe the
presence (“Detected”) or absence (“Not Detected”) of
alleles at a given time as two mutually exclusive and
exhaustive states that define a Markov chain (Fig. 4a).
We grouped all the v-SNPs based on treatment efficacy
and used their presence or absence at each time point
as the basis for the estimation of transition probabilities.
We define four different transition probabilities: Detec-
ted—Detected as “Stable”, Detected—Not Detected as
“Loss”, Not Detected—Detected as “Gain”, and Not Detec-
ted—Not Detected as “Absent”. The following pairs of
transition probabilities sum to 1.0 by definition: Stable–
Loss and Absent–Gain.
We used custom Python scripts to randomly re-

sample with replacement (bootstrap) the v-SNPs and in
each case count the number of occurrences of each type
of transition. We then calculated what proportion of the
possible outcomes each type represented and thus ob-
tained an estimate of transition probabilities for each
state. We performed 1000 iterations of the bootstrap,
sorted the estimates and took the 50th percentile value
as the estimate of the probability. We defined the 95%
confidence interval (CI95%) by taking the 25th and 975th
permille values of the sorted estimates. We performed
the same analysis on SNPs separated by translational im-
pact (nonsynonymous and synonymous). In addition we
repeated the analysis for all SNPs and synonymous and
nonsynonymous SNPs using only v-SNPs whose esti-
mated frequency exceeded 1.5%.

pNS analysis
We calculated the proportion of nonsynonymous to syn-
onymous mutations by first annotating the detected SNPs
by using either Var Scan2 (v-SNPs) or custom Python
scripts (f-SNPs). We omitted all SNPs that did not affect a
coding sequence.
We then generated a codon substitution matrix using a

base substitution model that takes into account the pro-
portion of guanine and cytosine in the genome (percent-
age GC content, 0.656) and the proportion of transitions
that occurred at the final position of codons in synonym-
ous f-SNPs (Ti, 0.729) as described previously [98]. Briefly,
for each codon we used a custom Python script to simu-
late 50,000 individual introductions of a single mutation
into the codon, and scored the outcomes as either syn-
onymous or nonsynonymous. We considered the average
number of nonsynonymous outcomes of the simulations

as an estimate of the probability that a mutation in the
given codon would be nonsynonymous.
We used the following formula to calculate the pNS

for each sample:

pNS ¼

NSYobserved

Xn

i¼1

Pr NSYð Þi
SYNobserved

Xn

i¼1

Pr SYNð Þi

where NSYobserved represents the number of observed
nonsynonymous and SYNobserved represents the number
of observed synonymous mutations in the sample.
Pr(NSY)i represents the expected probability of a nonsy-
nonymous mutation arising from the i-th codon, which is
the same as the i-th codon mutated in the observed
samples. n represents the number of all the mutated
codons in the sample.
In order to be able to test the hypothesis that the ob-

served pNS shows a deviation from the null expectation
of genetic drift, we simulated the outcome of mutating
the same codons under the assumption of random mu-
tagenesis. To this effect we consider the mutation of
each codon that was mutated within a sample as a Ber-
noulli trial with the probability of success given by the
expected probability of nonsynonymous mutation calcu-
lated earlier. We also assumed that mutations occurred
independently of each other. Performing a Bernoulli trial
for each mutated codon in the sample generated a data-
set that reflected a possible distribution of outcomes in
the absence of selection. We used this outcome as the
source of “observed” variables for the calculation of pNS
in the formula above.
We grouped the pNS calculations for our samples and

their cognate simulations based on treatment efficacy and
performed a Mann–Whitney U-test to determine whether
the two sets of pNS results could come from the same
population. Finally, we repeated the pNS analysis, simula-
tion, and U-test considering only v-SNPs whose estimated
frequency exceeded 1.5%.

Excess mutation accumulation
We focused the excess mutation accumulation analysis
exclusively on v-SNPs accumulated after the onset of
treatment, therefore ignoring all mutations that were
present before treatment began. We considered a given
gene set to be excessively mutated if it had accumulated
more mutations than we would expect by chance given
its nucleotide length. The null expectation is based on
the binomial distribution where the probability of suc-
cess is given as the proportion of the genome covered
by the gene set of interest, the number of trials is the
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total number of mutations detected across the tested
samples, and the number of successful trials is the
number of mutations that affected the gene set of inter-
est. We split our patients into two groups based on the
number of effective drugs in their regimen and then
performed a one-tailed binomial test for genes covering
different gene sets (see Additional file 5: Table S9 for
gene lists).
We determined whether or not there was an excessive

accumulation of nonsynonymous mutations within the
mutations affecting each gene set by using a similar ap-
proach, excluding all mutations that were present at the
onset of treatment. The binomial distribution was defined
as follows: the probability of success was given by the
expected probability of a nonsynonymous mutation given
the mutated codons affecting a gene set of interest (as
described in “pNS analysis”); the number of trials was
defined as the total number of intragenic mutations within
a gene set of interest; and the number of successful trials
as the number of nonsynonymous mutations within the
same set. We carried out these determinations for both
groups of patients and then performed a one-tailed bino-
mial test for genes covering different gene sets.

Accession codes
Sequencing reads have been submitted to the EMBL-EBI
European Nucleotide Archive (ENA) Sequence Read
Archive (SRA) under the study accession number
PRJEB13325 and PRJEB17864.

Additional files

Additional file 1: Supplementary text, figures and tables. In this
document we elaborate on the efficacy of treatment (Section 1), expand
on the reasoning behind our choice of variant calling approach, describe
the outcome of population simulations providing the basis for our
demographic expectations, illustrate the phylogeny of our isolates, and
finally describe the data contained in the other additional files. The display
items in the document include the following tables and figures. Table S1
Phenotypic drug susceptibility testing for first line drugs. Table S2
Treatment combinations given to patients. Table S3 Average sequencing
depth of individual samples. Table S4 Variations in the number of detected
f-SNPs in patients at each time point is consistent with v-SNP dynamics.
Table S5 Transition probabilities for the detection of v-SNPs. Figure S1
Treatment efficacy in patient groups. Figure S2 Error profiles of simulated
reads. Figure S3 Culture-induced minor variants in MTBC. Figure S4
Retained minor variants in our patient population. Figure S5 Demographic
trends of MTBC populations within the host are consistent with bacterial
killing. Figure S6 Sequencing depth does not bias v-SNP detection. Figure
S7 The number of detected v-SNPs for each patient varies over time. Figure
S8 Cumulative distributions of allele frequencies. Figure S9 Frequency
trajectories of recurrent alleles vary, showing a dynamic and heterogeneous
population. Figure S10 Sweeps of v-SNPs occur independently of the type of
v-SNP affected the association of v-SNPs with drug resistance. Figure S11
Most patients are infected with strains of the Beijing family. (PDF 532 kb)

Additional file 2: Patient-level data on bacterial populations, including
the heterogeneity of the population and the burden of infection. (CSV 1 kb)

Additional file 3: v-SNP data. All collected and calculated information
for the detected v-SNPs. (CSV 36 kb)

Additional file 4: f-SNP data. All collected and calculated information
for the detected f-SNPs. (CSV 186 kb)

Additional file 5: Published predefined gene sets. These gene sets were
used for mutation enrichment analysis (Table 1 in the main text). (CSV 41 kb)
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